Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65.335
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579011

RESUMO

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Assuntos
Neomicina , Riboswitch , Neomicina/metabolismo , Neomicina/farmacologia , Simulação de Dinâmica Molecular , Riboswitch/genética , Mutação , Conformação Molecular , Conformação de Ácido Nucleico , Ligantes
2.
Nat Commun ; 15(1): 3015, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589344

RESUMO

Many experimental and computational efforts have sought to understand DNA origami folding, but the time and length scales of this process pose significant challenges. Here, we present a mesoscopic model that uses a switchable force field to capture the behavior of single- and double-stranded DNA motifs and transitions between them, allowing us to simulate the folding of DNA origami up to several kilobases in size. Brownian dynamics simulations of small structures reveal a hierarchical folding process involving zipping into a partially folded precursor followed by crystallization into the final structure. We elucidate the effects of various design choices on folding order and kinetics. Larger structures are found to exhibit heterogeneous staple incorporation kinetics and frequent trapping in metastable states, as opposed to more accessible structures which exhibit first-order kinetics and virtually defect-free folding. This model opens an avenue to better understand and design DNA nanostructures for improved yield and folding performance.


Assuntos
Nanoestruturas , Nanotecnologia , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Cinética
3.
J Phys Chem Lett ; 15(14): 3820-3827, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38557079

RESUMO

Repeat RNA sequences self-associate to form condensates. Simulations of a coarse-grained single-interaction site model for (CAG)n (n = 30 and 31) show that the salt-dependent free energy gap, ΔGS, between the ground (perfect hairpin) and the excited state (slipped hairpin (SH) with one CAG overhang) of the monomer for (n even) is the primary factor that determines the rates and yield of self-assembly. For odd n, the free energy (GS) of the ground state, which is an SH, is used to predict the self-association kinetics. As the monovalent salt concentration, CS, increases, ΔGS and GS increase, which decreases the rates of dimer formation. In contrast, ΔGS for shuffled sequences, with the same length and sequence composition as (CAG)31, is larger, which suppresses their propensities to aggregate. Although demonstrated explicitly for (CAG) polymers, the finding of inverse correlation between the free energy gap and RNA aggregation is general.


Assuntos
RNA , Repetições de Trinucleotídeos , Conformação de Ácido Nucleico , Cloreto de Sódio
4.
Biochem Biophys Res Commun ; 710: 149856, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583234

RESUMO

The topological properties of DNA have long been a focal point in biophysics. In the 1970s, White proposed that the topology of closed DNA double helix follows White's formula: Lk=Wr+Tw. However, there has been controversy in the calculation of DNA twisting number, partly due to discrepancies in the definition of torsion in differential geometry. In this paper, we delved into a detailed study of torsion, revealing that the calculation of DNA twisting number should use the curve's geodesic torsion. Furthermore, we found that the discrepancy in DNA twisting numbers calculated using different torsion is N. This study elucidated the impact of torsion on the calculation of DNA twisting numbers, aiming to resolve controversies in the calculation of DNA topology and provided accurate computational methods and theoretical foundations for related research.


Assuntos
DNA , Conformação de Ácido Nucleico , DNA/genética , Matemática , Biofísica
5.
Langmuir ; 40(11): 5799-5808, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501264

RESUMO

Nanopores are powerful single-molecule sensors for analyzing biomolecules such as DNA and proteins. Understanding the dynamics of DNA capture and translocation through nanopores is essential for optimizing their performance. In this study, we examine the effects of applied voltage and pore diameter on current blockage, translocation time, collision, and capture location by translocating λ-DNA through 5.7 and 16 nm solid-state nanopores. Ionic current changes are used to infer DNA conformations during translocation. We find that translocation time increases with pore diameter, which can be attributed to the decrease of the stall force. Linear and exponential decreases of collision frequency with voltage are observed in the 16 and 5.7 nm pores, respectively, indicating a free energy barrier in the small pore. Moreover, the results reveal a voltage-dependent bias in the capture location toward the DNA ends, which is explained by a "pulley effect" deforming the DNA as it approaches the pore. This study provides insights into the physics governing DNA capture and translocation, which can be useful for promoting single-file translocation to enhance nanopore sensing.


Assuntos
Nanoporos , DNA , Nanotecnologia/métodos , Transporte de Íons , Conformação de Ácido Nucleico
6.
J Phys Chem Lett ; 15(10): 2708-2714, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427973

RESUMO

CPEB3 ribozyme is a self-cleaving RNA that occurs naturally in mammals and requires divalent metal ions for efficient activity. Ribozymes exhibit preferences for specific metal ions, but the exact differences in the catalytic mechanisms of various metal ions on the CPEB3 ribozyme remain unclear. Our findings reveal that Mn2+ functions as a more effective cofactor for CPEB3 ribozyme catalysis compared to Mg2+, as confirmed by its stronger binding affinity to CPEB3 by EPR. Cleavage assays of CPEB3 mutants and molecular docking analyses further showed that excessive Mn2+ ions can bind to a second binding site near the catalytic site, hindering CPEB3 catalytic efficiency and contributing to the Mn2+ bell-shaped curve. These results implicate a pivotal role for the local nucleobase-Mn2+ interactions in facilitating RNA folding and modulating the directed attack of nucleophilic reagents. Our study provides new insights and experimental evidence for exploring the divalent cation dependent cleavage mechanism of the CPEB3 ribozyme.


Assuntos
RNA Catalítico , Animais , RNA Catalítico/química , Magnésio/química , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Cátions Bivalentes/metabolismo , Catálise , Mamíferos/genética , Mamíferos/metabolismo
7.
Trends Genet ; 40(4): 291-292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485607

RESUMO

'Ribo-organisms' of the primordial RNA World would have needed ribozymes that catalyze RNA replication. McRae, Wan, Kristoffersen et al. recently revealed how these RNA replicases might have functioned by solving the structure of an artificial polymerase ribozyme. This work illustrates how complex RNA structures evolve, with implications for the origins of life.


Assuntos
RNA Catalítico , RNA , RNA/genética , RNA/química , RNA Catalítico/genética , Conformação de Ácido Nucleico , RNA Polimerases Dirigidas por DNA/genética
8.
Wiley Interdiscip Rev RNA ; 15(2): e1835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38479802

RESUMO

The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Assuntos
RNA Catalítico , Ribonuclease P , Ribonuclease P/química , Ribonuclease P/genética , Ribonuclease P/metabolismo , Precursores de RNA/genética , RNA Catalítico/química , Sequência de Bases , Conformação de Ácido Nucleico , RNA de Transferência/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA
9.
Science ; 383(6688): 1245-1252, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484052

RESUMO

The minor spliceosome, which is responsible for the splicing of U12-type introns, comprises five small nuclear RNAs (snRNAs), of which only one is shared with the major spliceosome. In this work, we report the 3.3-angstrom cryo-electron microscopy structure of the fully assembled human minor spliceosome pre-B complex. The atomic model includes U11 small nuclear ribonucleoprotein (snRNP), U12 snRNP, and U4atac/U6atac.U5 tri-snRNP. U11 snRNA is recognized by five U11-specific proteins (20K, 25K, 35K, 48K, and 59K) and the heptameric Sm ring. The 3' half of the 5'-splice site forms a duplex with U11 snRNA; the 5' half is recognized by U11-35K, U11-48K, and U11 snRNA. Two proteins, CENATAC and DIM2/TXNL4B, specifically associate with the minor tri-snRNP. A structural analysis uncovered how two conformationally similar tri-snRNPs are differentiated by the minor and major prespliceosomes for assembly.


Assuntos
Íntrons , RNA Nuclear Pequeno , Spliceossomos , Humanos , Microscopia Crioeletrônica , Ribonucleoproteínas Nucleares Pequenas/química , Sítios de Splice de RNA , Splicing de RNA , RNA Nuclear Pequeno/química , Spliceossomos/química , Conformação de Ácido Nucleico
10.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497475

RESUMO

We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.


Assuntos
DNA , RNA , RNA/química , Conformação de Ácido Nucleico , DNA/química , Simulação de Dinâmica Molecular , Software
11.
J Am Chem Soc ; 146(10): 7052-7062, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427585

RESUMO

Functional DNAs are valuable molecular tools in chemical biology and analytical chemistry but suffer from low activities due to their limited chemical functionalities. Here, we present a chemoenzymatic method for site-specific installation of diverse functional groups on DNA, and showcase the application of this method to enhance the catalytic activity of a DNA catalyst. Through chemoenzymatic introduction of distinct chemical groups, such as hydroxyl, carboxyl, and benzyl, at specific positions, we achieve significant enhancements in the catalytic activity of the RNA-cleaving deoxyribozyme 10-23. A single carboxyl modification results in a 100-fold increase, while dual modifications (carboxyl and benzyl) yield an approximately 700-fold increase in activity when an RNA cleavage reaction is catalyzed on a DNA-RNA chimeric substrate. The resulting dually modified DNA catalyst, CaBn, exhibits a kobs of 3.76 min-1 in the presence of 1 mM Mg2+ and can be employed for fluorescent imaging of intracellular magnesium ions. Molecular dynamics simulations reveal the superior capability of CaBn to recruit magnesium ions to metal-ion-binding site 2 and adopt a catalytically competent conformation. Our work provides a broadly accessible strategy for DNA functionalization with diverse chemical modifications, and CaBn offers a highly active DNA catalyst with immense potential in chemistry and biotechnology.


Assuntos
DNA Catalítico , RNA Catalítico , Sequência de Bases , Magnésio , DNA Catalítico/química , DNA , RNA/química , Íons , Conformação de Ácido Nucleico , Catálise , RNA Catalítico/metabolismo
12.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474280

RESUMO

Over the past decade, long non-coding RNAs (lncRNAs) have been recognized as key players in gene regulation, influencing genome organization and expression. The locus-specific binding of these non-coding RNAs (ncRNAs) to DNA involves either a non-covalent interaction with DNA-bound proteins or a direct sequence-specific interaction through the formation of RNA:DNA triplexes. In an effort to develop a novel strategy for characterizing a triple-helix formation, we employed atomic force microscopy (AFM) to visualize and study a regulatory RNA:DNA triplex formed between the Khps1 lncRNA and the enhancer of the proto-oncogene SPHK1. The analysis demonstrates the successful formation of RNA:DNA triplexes under various conditions of pH and temperature, indicating the effectiveness of the AFM strategy. Despite challenges in discriminating between the triple-helix and R-loop configurations, this approach opens new perspectives for investigating the role of lncRNAs in gene regulation at the single-molecule level.


Assuntos
RNA Longo não Codificante , Sequência de Bases , Microscopia de Força Atômica , RNA Longo não Codificante/genética , Conformação de Ácido Nucleico , DNA/química
13.
Methods Mol Biol ; 2784: 191-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502487

RESUMO

The secondary and tertiary structures of RNA play a vital role in the regulation of biological reactions. These structures have been experimentally studied through in vivo and in vitro analyses, and in silico models have become increasingly accurate in predicting them. Recent technologies have diversified RNA structure predictions, from the earliest thermodynamic and molecular dynamic-based RNA structure predictions to deep learning-based conformation predictions in the past decade. While most research on RNA structure prediction has focused on short non-coding RNAs, there has been limited research on predicting the conformation of longer mRNAs. Our study introduces a computer simulation model called the Three-dimensional RNA Illustration Program (TRIP). TRIP is based on single-chain models and angle restriction of each bead component from previously reported single-molecule fluorescence in situ hybridization (smFISH) experiments. TRIP is a fast and efficient application that only requires up to three inputs to acquire outputs. It can also provide a rough visualization of the 3D conformation of RNA, making it a valuable tool for predicting RNA end-to-end distance.


Assuntos
Simulação de Dinâmica Molecular , RNA , RNA/genética , RNA/química , Conformação de Ácido Nucleico , RNA Mensageiro/genética , Hibridização in Situ Fluorescente
14.
Sci Adv ; 10(12): eadk1250, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507482

RESUMO

RNA nanotechnology aims to use RNA as a programmable material to create self-assembling nanodevices for application in medicine and synthetic biology. The main challenge is to develop advanced RNA robotic devices that both sense, compute, and actuate to obtain enhanced control over molecular processes. Here, we use the RNA origami method to prototype an RNA robotic device, named the "Traptamer," that mechanically traps the fluorescent aptamer, iSpinach. The Traptamer is shown to sense two RNA key strands, acts as a Boolean AND gate, and reversibly controls the fluorescence of the iSpinach aptamer. Cryo-electron microscopy of the closed Traptamer structure at 5.45-angstrom resolution reveals the mechanical mode of distortion of the iSpinach motif. Our study suggests a general approach to distorting RNA motifs and a path forward to build sophisticated RNA machines that through sensing, computing, and actuation modules can be used to precisely control RNA functionalities in cellular systems.


Assuntos
Nanoestruturas , Robótica , RNA/genética , Microscopia Crioeletrônica , Oligonucleotídeos/química , Nanotecnologia/métodos , Corantes , Nanoestruturas/química , Conformação de Ácido Nucleico
15.
Methods Enzymol ; 695: 45-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521590

RESUMO

Genomic DNA exhibits an innate ability to manifest diverse sequence-dependent secondary structures, serving crucial functions in gene regulation and cellular equilibrium. While extensive research has confirmed the formation of G-quadruplex structures by guanine-rich sequences in vitro and in cells, recent investigations have turned the quadruplex community's attention to the cytosine (C)-rich complementary strands that can adopt unique tetra-stranded conformation, termed as intercalated motif or i-motif. I-motifs are stabilized by hemi-protonated C:CH+ base pairs under acidic conditions. Initially, the in vivo occurrence of i-motifs was underestimated because their formation is favored at non-physiological pH. However, groundbreaking research utilizing the structure-specific iMab antibody and high-throughput sequencing have recently detected their conserved dispersion throughout the genome, challenging previous assumptions. Given the evolving nature of this research field, it becomes imperative to conduct independent in vitro experiments aimed at identifying potential i-motif formation in C-rich sequences and consolidating the findings to address the properties of i-motifs. This chapter serves as an introductory guide for the swift identification of novel i-motifs, where we present an experimental framework for investigating and characterizing i-motif sequences in vitro. In this chapter, we selected a synthetic oligonucleotide (C7T3) sequence and outlined appropriate methodologies for annealing the i-motif structure into suitable buffers. Then, we validated its formation by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopy. Finally, we provided a thorough account of the step-by-step procedures to investigate the effect of i-motif formation on the stalling or retardation of DNA replication using high resolution primer extension assays.


Assuntos
DNA , Quadruplex G , Conformação de Ácido Nucleico , DNA/química , Pareamento de Bases , Espectroscopia de Ressonância Magnética , Dicroísmo Circular
16.
J Chem Theory Comput ; 20(6): 2676-2688, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38447040

RESUMO

Molecular dynamics simulations play a pivotal role in elucidating the dynamic behaviors of RNA structures, offering a valuable complement to traditional methods such as nuclear magnetic resonance or X-ray. Despite this, the current precision of RNA force fields lags behind that of protein force fields. In this work, we systematically compared the performance of four RNA force fields (ff99bsc0χOL3, AMBERDES, ff99OL3_CMAP1, AMBERMaxEnt) across diverse RNA structures. Our findings highlight significant challenges in maintaining stability, particularly with regard to cross-strand and cross-loop hydrogen bonds. Furthermore, we observed the limitations in accurately describing the conformations of nonhelical structural motif, terminal nucleotides, and also base pairing and base stacking interactions by the tested RNA force fields. The identified deficiencies in existing RNA force fields provide valuable insights for subsequent force field development. Concurrently, these findings offer recommendations for selecting appropriate force fields in RNA simulations.


Assuntos
Simulação de Dinâmica Molecular , RNA , Conformação de Ácido Nucleico , RNA/química , Pareamento de Bases , Espectroscopia de Ressonância Magnética
17.
Commun Biol ; 7(1): 297, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461362

RESUMO

Pseudoknots are key structure motifs of RNA and pseudoknotted RNAs play important roles in a variety of biological processes. Here, we present KnotFold, an accurate approach to the prediction of RNA secondary structure including pseudoknots. The key elements of KnotFold include a learned potential function and a minimum-cost flow algorithm to find the secondary structure with the lowest potential. KnotFold learns the potential from the RNAs with known structures using an attention-based neural network, thus avoiding the inaccuracy of hand-crafted energy functions. The specially designed minimum-cost flow algorithm used by KnotFold considers all possible combinations of base pairs and selects from them the optimal combination. The algorithm breaks the restriction of nested base pairs required by the widely used dynamic programming algorithms, thus enabling the identification of pseudoknots. Using 1,009 pseudoknotted RNAs as representatives, we demonstrate the successful application of KnotFold in predicting RNA secondary structures including pseudoknots with accuracy higher than the state-of-the-art approaches. We anticipate that KnotFold, with its superior accuracy, will greatly facilitate the understanding of RNA structures and functionalities.


Assuntos
Algoritmos , RNA , RNA/genética , Conformação de Ácido Nucleico , Pareamento de Bases , Redes Neurais de Computação
18.
Nanoscale ; 16(15): 7678-7689, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38533617

RESUMO

Magnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) via click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density. At low densities, ssDNA strands adopt a coiled conformation that results in minor alterations to particle dynamics, while at high densities, they organize into polymer brushes that collectively influence particle dynamics. Intermediate ssDNA densities, where the dynamics are most sensitive to changes, show the highest magnetic biosensing sensitivity for the detection of target nucleic acids. Finally, we demonstrate that MNPs with high ssDNA grafting densities are required to efficiently couple to DNA origami. Our results establish ssDNA grafting density as a critical parameter for the functionalization of MNPs for magnetic biosensing and functionalization of DNA nanostructures.


Assuntos
Nanopartículas de Magnetita , Ácidos Nucleicos , DNA/química , DNA de Cadeia Simples , Fenômenos Magnéticos , Conformação de Ácido Nucleico
19.
J Am Chem Soc ; 146(13): 8887-8894, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503430

RESUMO

Templated ligation offers an efficient approach to replicate long strands in an RNA world. The 2',3'-cyclic phosphate (>P) is a prebiotically available activation that also forms during RNA hydrolysis. Using gel electrophoresis and high-performance liquid chromatography, we found that the templated ligation of RNA with >P proceeds in simple low-salt aqueous solutions with 1 mM MgCl2 under alkaline pH ranging from 9 to 11 and temperatures from -20 to 25 °C. No additional catalysts were required. In contrast to previous reports, we found an increase in the number of canonical linkages to 50%. The reaction proceeds in a sequence-specific manner, with an experimentally determined ligation fidelity of 82% at the 3' end and 91% at the 5' end of the ligation site. With splinted oligomers, five ligations created a 96-mer strand, demonstrating a pathway for the ribozyme assembly. Due to the low salt requirements, the ligation conditions will be compatible with strand separation. Templated ligation mediated by 2',3'-cyclic phosphate in alkaline conditions therefore offers a performant replication and elongation reaction for RNA on early Earth.


Assuntos
RNA Catalítico , RNA , RNA/química , Fosfatos , RNA Catalítico/química , Temperatura , Cloreto de Sódio , Conformação de Ácido Nucleico
20.
Biochemistry ; 63(6): 777-787, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437710

RESUMO

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of viral and innate immune response proteins. While Z-form adoption is preferred by certain sequences, such as the commonly studied (CpG)n repeats, Zα has been reported to bind to a wide range of sequence contexts. Studying how Zα interacts with B-/A-form helices prior to their conversion to the Z-conformation is challenging as binding coincides with Z-form adoption. Here, we studied the binding of Zα fromHomo sapiens ADAR1 to a locked "A-type" version of the (CpG)3 construct (LNA (CpG)3) where the sugar pucker is locked into the C3'-endo/C2'-exo conformation, which prevents the duplex from adopting the alternating C2'/C3'-endo sugar puckers found in the Z-conformation. Using NMR and other biophysical techniques, we find that ZαADAR1 binds to the LNA (CpG)3 using a similar interface as for Z-form binding, with a dissociation constant (KD) of ∼4 µM. In contrast to Z-DNA/Z-RNA, where two ZαADAR1 bind to every 6 bp stretch, our data suggests that ZαADAR1 binds to multiple LNA molecules, indicating a completely different binding mode. Because ZαADAR1 binds relatively tightly to a non-Z-form model, its binding to B/A-form helices may need to be considered when experiments are carried out which attempt to identify the Z-form targets of Zα domains. The use of LNA constructs may be beneficial in experiments where negative controls for Z-form adoption are needed.


Assuntos
DNA Forma Z , Ácidos Nucleicos , Conformação de Ácido Nucleico , Sítios de Ligação , RNA , Açúcares , Adenosina Desaminase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...